MICROPROCESSOR D1201

3. Measure on connector contact X1201/6 to test the microprocessor D1201.

Correct = 0.5 Hz.

Incorrect (defect microprocessor D1201) = not 0.5 Hz.

OPTICAL INTERFACE

- 4. Shine with a lamp in the "Optical Interface" holes to test the optical interface receiver.
- Measure on the transceiver line D1201/31.
 Apply light and verify that the signal level changes from +5V DC (dark) to 0V DC (light). Some spikes are allowed.

ADDRESS/DATA LINES

6. Measure on address/data bus 00 (AD00, D1201/2).

Correct = Logic 0.

All other address data lines (AD01 to AD15) are logic 1 (+5V).

7. Ground and release testpoint TP217 (first time) and the next address/data AD01 line will go low (to logic 0).

Continue grounding and releasing testpoint TP217 until address/data line AD15 goes low (fifteenth time).

With steps 6 and 7 the buffered addresses throughout the whole instrument are active and can be traced.

RAMS D1204 AND D1206

8. The next grounding of testpoint TP217 (sixteenth time) starts the RAM test of the RAMs D1204 and D1206. Measure on connector contact X1201/6.

During the RAM test connector contact starts at logic 0.

RAM D1204 and D1206 correct = 0.5 Hz.

RAM D 1204 or D1206 incorrect = logic 1.

Continue at step 9.

Ground and release testpoint TP217 (seventeenth time) to start the RAM test of RAM D1206.
 Measure on connector contact X1201/6.

During the RAM test connector contact X1201/6 starts at logic 0.

RAM D1206 correct = 0.5 Hz.

RAM D1206 incorrect = logic 1.

ESTABLISHING COMMUNICATION

- 10. After the seventeenth time of grounding TP217, the ScopeMeter sends an <XON> via the RS-232 interface. Now communication is established, it is possible to reprogram the FlashROMs. For special software contact your nearest Fluke/Philips Service Center.
- 11. Ground testpoint TP216 one more time to abort the Kernel Test.